2019-07-16 13:20发布
保护噪声敏感节点免受噪声节点的影响
尽可能缩短噪声敏感节点,并远离噪声节点。例如,从电阻分压网络到反馈(FB)引脚的长迹线可以充当天线并捕获电磁辐射干扰的噪声(图10)。这种噪声会被引入FB引脚,致使输出端产生额外的噪声,甚至使器件不稳定。在设计开关降压调节器的布局时,将这一切都考虑在内是一个挑战。
表1.降压转换器中噪声敏感节点和噪声节点的示例。
图10.始终将FB引脚上的电阻分压器尽可能靠近FB引脚放置。
模块的优势在于将噪声敏感节点和噪声节点保持在最低限度,从而最大限度地减小错误布局的几率。唯一要注意的是保持FB引脚的迹线尽可能短。
结论
在开关降压转换器中有许多用来调节EMI的旋钮,但用来实现最佳方案可能还不够方便。找到最佳配置会花费大量宝贵的设计时间。电源模块早已包括FET和电感器,这就使得创建和完成具有良好EMI特性的电源设计变得简单而又快捷。使用降压模块进行设计时最关键的一点是一些外部元件的放置方式,这有助于显著提高EMI特性。
转换器和电源模块的EMI比较
前文说明了开关电源中EMI的来源以及如何降低EMI。现在,本文将通过比较转换器和使用相同集成电路(IC)的电源模块之间的测量结果,来演示模块如何帮助减轻EMI辐射。两者均来自TI的SIMPLE SWITCHER产品线,转换器为LMR23630,电源模块为LMZM33603,采用LMR23630 IC。通过对两个器件的EVM做部分更改,以获得相同的BOM数,因此结果仅取决于所选部件(转换器或电源模块)和布局。两种EVM均具有良好的优化布局。之后,将电容器放置在远离输入引脚的位置,就生成了不良布局。
LMR23630转换器的性能
SHAPE * MERGEFORMAT
转换器 - LMR 23630
良好布局
电容器靠近
电容器远离
无电容器
频率[MHz]
小电容器靠近
小电容器远离
无小电容器
电平[dBµV/m]
CISPR 22 A3M级
图11.具有不同输入电容布局的LMR23630转换器的EMI辐射。
图11显示了不同设计布局的四种不同EMI频谱。设计布局从优至劣排列(类似于图5,只是把各步骤分开)。第一次测量(良好布局/蓝线)时,未对EVM的布局做出更改(良好布局中所有的输入电容器都非常靠近输入引脚)。第二次测量(小电容器靠近/红线)时,两个4.7μF电容器均放置在距输入引脚2.5厘米处。0.22μF的小电容器非常靠近输入引脚。在第三(小电容器远离/绿线)和第四(无小电容器/紫线)次测量时,小电容器分别距输入引脚2.5厘米,然后完全移除。
您可以在图11中看到输入电容器的放置非常关键。将小输入电容器远离输入引脚放置或将其完全移除会违背CISPR 22 A3M级标准。将小电容器靠近输入引脚放置可以最大限度地减少高频环路面积。小电容器可滤除高频噪声,而较大电容的电容器可滤除低频噪声。
电源模块的封装中通常包含一个小输入电容器。让我们看看布局不良时电源模块的性能。
LMZM33603电源模块的性能
图12显示了电源模块的EVM布局,同样从优至劣排列。蓝线表示未更改EVM的EMI辐射。红线和绿线表示不良布局,其中一条线有两个4.7μF输入电容器,位于PCB底部下方(红线)。绿线的电容器距输入引脚约3.5厘米(图13中以红 {MOD}椭圆形突出显示)。图13中的红 {MOD}粗线还显示了更改后的EVM,以及VIN、输入电容器和接地之间形成的关键环路区域。EMI特性变差,但并不违背CISPR 22 A3M级标准。
图12.TI LMZM33603电源模块的EMI辐射特性
图13.TI LMZM33603电源模块的不良布局示例。
电源模块可以补救布局设计错误
图14在单个图表中对LMR23630转换器(红线)和LMZM33603电源模块(蓝线)做出了对比。两者均有类似的不良布局,所有外部输入电容器都远离输入引脚。
显然,LMZM33603电源模块的EMI辐射特性要优于LMR23630转换器。尽管两种布局均不完美,但电源模块会通过CISPR测试,而转换器无法通过测试。
图14.比较TI LMR23630转换器和LMZM33603电源模块的EMI特性。
最多设置5个标签!
保护噪声敏感节点免受噪声节点的影响
尽可能缩短噪声敏感节点,并远离噪声节点。例如,从电阻分压网络到反馈(FB)引脚的长迹线可以充当天线并捕获电磁辐射干扰的噪声(图10)。这种噪声会被引入FB引脚,致使输出端产生额外的噪声,甚至使器件不稳定。在设计开关降压调节器的布局时,将这一切都考虑在内是一个挑战。
表1.降压转换器中噪声敏感节点和噪声节点的示例。
图10.始终将FB引脚上的电阻分压器尽可能靠近FB引脚放置。
模块的优势在于将噪声敏感节点和噪声节点保持在最低限度,从而最大限度地减小错误布局的几率。唯一要注意的是保持FB引脚的迹线尽可能短。
结论
在开关降压转换器中有许多用来调节EMI的旋钮,但用来实现最佳方案可能还不够方便。找到最佳配置会花费大量宝贵的设计时间。电源模块早已包括FET和电感器,这就使得创建和完成具有良好EMI特性的电源设计变得简单而又快捷。使用降压模块进行设计时最关键的一点是一些外部元件的放置方式,这有助于显著提高EMI特性。
转换器和电源模块的EMI比较
前文说明了开关电源中EMI的来源以及如何降低EMI。现在,本文将通过比较转换器和使用相同集成电路(IC)的电源模块之间的测量结果,来演示模块如何帮助减轻EMI辐射。两者均来自TI的SIMPLE SWITCHER产品线,转换器为LMR23630,电源模块为LMZM33603,采用LMR23630 IC。通过对两个器件的EVM做部分更改,以获得相同的BOM数,因此结果仅取决于所选部件(转换器或电源模块)和布局。两种EVM均具有良好的优化布局。之后,将电容器放置在远离输入引脚的位置,就生成了不良布局。
LMR23630转换器的性能
SHAPE * MERGEFORMAT
转换器 - LMR 23630
良好布局
电容器靠近
电容器远离
无电容器
频率[MHz]
良好布局
小电容器靠近
小电容器远离
无小电容器
电平[dBµV/m]
CISPR 22 A3M级
图11.具有不同输入电容布局的LMR23630转换器的EMI辐射。
图11显示了不同设计布局的四种不同EMI频谱。设计布局从优至劣排列(类似于图5,只是把各步骤分开)。第一次测量(良好布局/蓝线)时,未对EVM的布局做出更改(良好布局中所有的输入电容器都非常靠近输入引脚)。第二次测量(小电容器靠近/红线)时,两个4.7μF电容器均放置在距输入引脚2.5厘米处。0.22μF的小电容器非常靠近输入引脚。在第三(小电容器远离/绿线)和第四(无小电容器/紫线)次测量时,小电容器分别距输入引脚2.5厘米,然后完全移除。
您可以在图11中看到输入电容器的放置非常关键。将小输入电容器远离输入引脚放置或将其完全移除会违背CISPR 22 A3M级标准。将小电容器靠近输入引脚放置可以最大限度地减少高频环路面积。小电容器可滤除高频噪声,而较大电容的电容器可滤除低频噪声。
电源模块的封装中通常包含一个小输入电容器。让我们看看布局不良时电源模块的性能。
LMZM33603电源模块的性能
图12显示了电源模块的EVM布局,同样从优至劣排列。蓝线表示未更改EVM的EMI辐射。红线和绿线表示不良布局,其中一条线有两个4.7μF输入电容器,位于PCB底部下方(红线)。绿线的电容器距输入引脚约3.5厘米(图13中以红 {MOD}椭圆形突出显示)。图13中的红 {MOD}粗线还显示了更改后的EVM,以及VIN、输入电容器和接地之间形成的关键环路区域。EMI特性变差,但并不违背CISPR 22 A3M级标准。
图12.TI LMZM33603电源模块的EMI辐射特性
图13.TI LMZM33603电源模块的不良布局示例。
电源模块可以补救布局设计错误
图14在单个图表中对LMR23630转换器(红线)和LMZM33603电源模块(蓝线)做出了对比。两者均有类似的不良布局,所有外部输入电容器都远离输入引脚。
显然,LMZM33603电源模块的EMI辐射特性要优于LMR23630转换器。尽管两种布局均不完美,但电源模块会通过CISPR测试,而转换器无法通过测试。
图14.比较TI LMR23630转换器和LMZM33603电源模块的EMI特性。
一周热门 更多>